Analiza wytrzymałości kompozytowej struktury dźwigara głównego skrzydła samolotu w obszarze mocowania do kadłuba

Celem pracy dyplomowej jest zapoznanie się z budową płatowca samolotu, dokumentacją techniczną dźwigara głównego skrzydła samolotu PZL-106, stworzenie na jej podstawie modeli numerycznych ze stopu aluminium i o strukturze kompozytowej oraz ich analizy masowo-wytrzymałościowe. W pracy uwzględniono obciążenie wypadkowe skrzydła, wynikające z sił aerodynamicznych oraz masowych działających na skrzydło, pochodzące od masy samolotu i ładunku. Istotnym elementem pracy jest zastąpienie oryginalnego dźwigara ze stopu aluminium strukturą kompozytową z zachowaniem sztywności konstrukcji. W tym celu omówiono materiały stosowane w konstrukcji płatowca, podstawowe zasady projektowania struktur metalowo-kompozytowych oraz metody modelowania laminatów. Analizę wytrzymałości dźwigara metodą elementów skończonych wykonano wykorzystując modele belkowe, powłokowe i brylów. Przeprowadzone analizy modeli brylowych fragmentu dźwigara w obszarze mocowania do kadłuba umożliwiły lokalizację miejsc koncentracji naprężeń. Na podstawie zaproponowano modyfikację kształtu okucia w celu poprawy rozkładu naprężeń. Na podstawie przeprowadzonych analiz stwierdzono, że modyfikacja konstrukcji polegająca na zastąpieniu stopu aluminium laminatem wegłowym oraz zmianie kształtu okucia wpłynęła na zmniejszenie masy konstrukcji (o 36%) przy jednoczesnym zwiększeniu wytrzymałości dźwigara. W ramach pracy wykorzystano oprogramowanie do modelowania i analizy MES: Catia, Hyper Mesh, Patran oraz Marc.

Naprężenia zredukowane według HMH w aluminiowej części okucia:

Spadek naprężeń zredukowanych w aluminiowej części okucia

Zmniejszenie naprężeń zredukowanych o 8% w aluminiowej części okucia i spadek masy dźwigara o 36%